Teaching robots to build simulations of themselves (2025)

References

  1. Afzal, A., Katz, D. S., Le Goues, C. & Timperley, C. S. Proc. 2021 14th IEEE Conference on Software Testing, Verification and Validation (ICST) (IEEE, 2021).

  2. Choi, H. et al. On the use of simulation in robotics: ppportunities, challenges, and suggestions for moving forward. Proc. Natl Acad. Sci. USA 118, e1907856118 (2021).

    Google Scholar

  3. Liu, C. K. & Negrut, D. The role of physics-based simulators in robotics. Annu. Rev. Control Robot. Auton. Syst. 4, 35–58 (2021).

    MATH Google Scholar

  4. Žlajpah, L. Simulation in robotics. Math. Comput. Simul. 79, 879–897 (2008).

    MathSciNet MATH Google Scholar

  5. Howard, D. et al. Evolving embodied intelligence from materials to machines. Nat. Mach. Intell. 1, 12–19 (2019).

    MATH Google Scholar

  6. Gallup, G. G. Self recognition in primates: a comparative approach to the bidirectional properties of consciousness. Am. Psychol. 32, 329–338 (1977).

    MATH Google Scholar

  7. Gallup, G. G. Jr Self-awareness and the emergence of mind in primates. Am. J. Primatol. 2, 237–248 (1982).

    MATH Google Scholar

  8. Cash, T. F. Body Image (Oxford Univ. Press, 2000).

  9. Chiel, H. J. & Beer, R. D. The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment. Trends Neurosci. 20, 553–557 (1997).

    MATH Google Scholar

  10. Agnew, W. et al. Amodal 3D reconstruction for robotic manipulation via stability and connectivity. In Proc. 2020 Conference on Robot Learning (eds Kober, J. et al.) 1498–1508 (2021).

  11. Huang, W. et al. VoxPoser: composable 3D value maps for robotic manipulation with language models. In Proc. 7th Conference on Robot Learning (eds Tan, J. et al.) 540–562 (PMLR, 2023).

  12. Papachristos, C., Khattak, S., Mascarich, F., Dang, T. & Alexis, K. Proc. 2019 International Conference on Unmanned Aircraft Systems (ICUAS) (IEEE, 2019).

  13. Xu, Z., He, Z., Wu, J. & Song, S. Learning 3D dynamic scene representations for robot manipulation. In Proc. 2020 Conference on Robot Learning (eds Kober, J. et al.) 126–142 (PMLR, 2021).

  14. Steels, L. & Spranger, M. The robot in the mirror. Connect. Sci. 20, 337–358 (2008).

    MATH Google Scholar

  15. Kwiatkowski, R. & Lipson, H. Task-agnostic self-modeling machines. Sci. Robot. 4, eaau9354 (2019).

    MATH Google Scholar

  16. Kwiatkowski, R., Hu, Y., Chen, B. & Lipson, H. On the origins of self-modeling. Preprint at https://arxiv.org/abs/2209.02010 (2022).

  17. Vaughan, R. & Zuluaga, M. Use your illusion: sensorimotor self-simulation allows complex agents to plan with incomplete self-knowledge. In Proc. 9th International Conference on from Animals to Animats: Simulation of Adaptive Behavior (eds Nolfi, S. et al.) 298–309 (Springer, 2006).

  18. Wittmeier, S. et al. Toward anthropomimetic robotics: development, simulation, and control of a musculoskeletal torso. Artif. Life 19, 171–193 (2013).

    Google Scholar

  19. Blum, C., Winfield, A. F. T. & Hafner, V. V. Simulation-based internal models for safer robots. Front. Robot. AI https://doi.org/10.3389/frobt.2017.00074 (2018).

  20. Chen, B., Kwiatkowski, R., Vondrick, C. & Lipson, H. Fully body visual self-modeling of robot morphologies. Sci. Robot. 7, eabn1944 (2022).

    Google Scholar

  21. Barron, J. T. et al. Proc. 2021 IEEE/CVF International Conference on Computer Vision (ICCV) (IEEE, 2021).

  22. Pumarola, A., Corona, E., Pons-Moll, G. & Moreno-Noguer, F. Proc. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2021).

  23. Reiser, C., Peng, S., Liao, Y. & Geiger, A. Proc. IEEE/CVF International Conference on Computer Vision (ICCV) (IEEE, 2021).

  24. Mildenhall, B. et al. NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65, 99–106 (2021).

  25. Hu, B., Huang, J., Liu, Y., Tai, Y.-W. & Tang, C.-K. Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2023).

  26. Lazova, V., Guzov, V., Olszewski, K., Tulyakov, S. & Pons-Moll, G. Proc. 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) (IEEE, 2023).

  27. Xu, C. et al. Proc. IEEE/CVF International Conference on Computer Vision (ICCV) (IEEE, 2023).

  28. Zhong, E. D., Bepler, T., Davis, J. H. & Berger, B. Proc. 8th International Conference on Learning Representations (ICLR, 2020).

  29. Xu, J. et al. Proc. 2023 IEEE/CVF International Conference on Computer Vision (ICCV) (IEEE, 2023).

  30. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at https://arxiv.org/abs/1412.6980 (2014).

  31. LaValle, S. M. & Kuffner, J. J. in Algorithmic and Computational Robotics (ed. Rus, D.) 303–307 (A K Peters/CRC Press, 2001).

  32. Bongard, J., Zykov, V. & Lipson, H. Resilient machines through continuous self-modeling. Science 314, 1118–1121 (2006).

    MATH Google Scholar

  33. Kucuk, S. & Bingul, Z. Robot Linematics: Forward and Inverse Kinematics (INTECH Open Access Publisher, 2006).

  34. Coumans, E. ACM SIGGRAPH 2015 Courses (Association for Computing Machinery, 2015).

  35. Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems (eds Wallach, H. et al.) 8024–8035 (Curran Associates, Inc., 2019).

  36. Agarap, A. F. Deep learning using rectified linear units (ReLU). Preprint at https://arxiv.org/abs/1803.08375 (2018).

  37. Tancik, M. et al. Fourier features let networks learn high frequency functions in low dimensional domains. Adv. Neural Inf. Process. Syst. 33, 7537–7547 (2020).

    MATH Google Scholar

  38. Buda, M., Maki, A. & Mazurowski, M. A. A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018).

    MATH Google Scholar

  39. Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Proc. 2017 IEEE International Conference on Computer Vision (ICCV) (IEEE, 2017).

  40. Hu, Y. & Lin, J. Teaching robots to build simulations of themselves. Zenodo https://doi.org/10.5281/zenodo.14539921 (2024).

Download references

Teaching robots to build simulations of themselves (2025)

References

Top Articles
Latest Posts
Recommended Articles
Article information

Author: Jerrold Considine

Last Updated:

Views: 6092

Rating: 4.8 / 5 (78 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Jerrold Considine

Birthday: 1993-11-03

Address: Suite 447 3463 Marybelle Circles, New Marlin, AL 20765

Phone: +5816749283868

Job: Sales Executive

Hobby: Air sports, Sand art, Electronics, LARPing, Baseball, Book restoration, Puzzles

Introduction: My name is Jerrold Considine, I am a combative, cheerful, encouraging, happy, enthusiastic, funny, kind person who loves writing and wants to share my knowledge and understanding with you.