Spontaneous phase locking in a broad-area semiconductor laser (2025)

References

  1. Narducci, L. M. & Abraham, N. B. Laser Physics and Laser Instabilities (World Scientific, 1988).

  2. van Tartwijk, G. H. M. & Agrawal, G. P. Laser instabilities: a modern perspective. Prog. Quant. Electron. 22, 43–122 (1998).

    Article ADS Google Scholar

  3. Ohtsubo, J. Semiconductor Lasers—Stability, Instability and Chaos 3rd edn (Springer, 2013).

  4. Sciamanna, M. & Shore, K. A. Physics and applications of laser diode chaos. Nat. Photonics 9, 151–162 (2015).

    Article Google Scholar

  5. Abraham, N. B. & Firth, W. J. Overview of transverse effects in nonlinear-optical systems. J. Opt. Soc. Am. B 7, 951–962 (1990).

    Article ADS Google Scholar

  6. Lugiato, L. Spatio-temporal structures. Part I. Phys. Rep. 219, 293–310 (1992).

    Article ADS Google Scholar

  7. Huyet, G., Martinoni, M. C., Tredicce, J. R. & Rica, S. Spatiotemporal dynamics of lasers with a large fresnel number. Phys. Rev. Lett. 75, 4027–4030 (1995).

    Article ADS Google Scholar

  8. Jauregui, C., Limpert, J. & Tünnermann, A. High-power fibre lasers. Nat. Photonics 7, 861–867 (2013).

    Article ADS Google Scholar

  9. Guo, Y. et al. Real-time multispeckle spectral-temporal measurement unveils the complexity of spatiotemporal solitons. Nat. Commun. 12, 67 (2021).

    Article ADS Google Scholar

  10. Bittner, S. & Sciamanna, M. Complex nonlinear dynamics of polarization and transverse modes in a broad-area VCSEL. APL Photonics 7, 126108 (2022).

    Article ADS Google Scholar

  11. Giudici, M., Tredicce, J. R., Vaschenko, G., Rocca, J. J. & Menoni, C. S. Spatio-temporal dynamics in vertical cavity surface emitting lasers excited by fast electrical pulses. Opt. Commun. 158, 313–321 (1998).

    Article ADS Google Scholar

  12. Fischer, I., Hess, O., Elsäßer, W. & Göbel, E. Complex spatio-temporal dynamics in the near-field of a broad-area semiconductor laser. Europhys. Lett. 35, 579 (1996).

    Article ADS Google Scholar

  13. Marciante, J. R. & Agrawal, G. P. Spatio-temporal characteristics of filamentation in broad-area semiconductor lasers: experimental results. IEEE Photonics Tech. Lett. 10, 54 (1998).

    Article ADS Google Scholar

  14. Scholz, D. et al. Measurement and simulation of filamentation in (Al,In)GaN laser diodes. Opt. Express 16, 6846–6859 (2008).

    Article ADS Google Scholar

  15. Wright, L. G., Christodoulides, D. N. & Wise, F. W. Spatiotemporal mode-locking in multimode fiber lasers. Science 358, 94–97 (2017).

    Article Google Scholar

  16. Wright, L. G. et al. Mechanisms of spatiotemporal mode-locking. Nat. Phys. 16, 565–570 (2020).

    Article Google Scholar

  17. Bittner, S. et al. Suppressing spatio-temporal lasing instabilities with wave-chaotic microcavities. Science 361, 1225–1231 (2018).

    Article Google Scholar

  18. Kim, K. et al. Impact of cavity geometry on microlaser dynamics. Phys. Rev. Lett. 131, 153801 (2023).

    Article ADS Google Scholar

  19. Ivars, S. B. et al. Photonic snake states in two-dimensional frequency combs. Nat. Photonics 17, 767–774 (2023).

    Article ADS Google Scholar

  20. Chen, C.-W., Wisal, K., Eliezer, Y., Stone, A. D. & Cao, H. Suppressing transverse mode instability through multimode excitation in a fiber amplifier. Proc. Nat. Acad. Sci. USA 120, e2217735120 (2023).

    Article MathSciNet Google Scholar

  21. Abrams, D. M. & Strogatz, S. H. Chimera states for coupled oscillators. Phys. Rev. Lett. 93, 174102 (2004).

    Article ADS Google Scholar

  22. Tinsley, M. R., Nkomo, S. & Showalter, K. Chimera and phase-cluster states in populations of coupled chemical oscillators. Nat. Phys. 8, 662–665 (2012).

    Article Google Scholar

  23. Parastesh, F. et al. Chimeras. Phys. Rep. 898, 1–114 (2021).

    Article ADS MathSciNet Google Scholar

  24. Shena, J., Hizanidis, J., Kovanis, V. & Tsironis, G. P. Turbulent chimeras in large semiconductor laser arrays. Sci. Rep. 7, 42116 (2017).

    Article ADS Google Scholar

  25. Larger, L., Penkovsky, B. & Maistrenko, Y. Laser chimeras as a paradigm for multistable patterns in complex systems. Nat. Commun. 6, 7752 (2015).

    Article ADS Google Scholar

  26. Uy, C.-H., Weicker, L., Rontani, D. & Sciamanna, M. Optical chimera in light polarization. APL Photonics 4, 056104 (2019).

    Article ADS Google Scholar

  27. Viktorov, E. A., Habruseva, T., Hegarty, S. P., Huyet, G. & Kelleher, B. Coherence and incoherence in an optical comb. Phys. Rev. Lett. 112, 224101 (2014).

    Article ADS Google Scholar

  28. Kazakov, D. et al. Cluster synchronization in a semiconductor laser. APL Photonics 9, 026104 (2024).

    Article ADS Google Scholar

  29. Hess, O. Spatio-temporal complexity in multi-stripe and broad-area semiconductor lasers. Chaos Solitons Fractals 4, 1597–1618 (1994).

    Article ADS Google Scholar

  30. Hess, O. & Kuhn, T. Maxwell-bloch equations for spatially inhomogeneous semiconductor lasers. II. Spatiotemporal dynamics. Phys. Rev. A 54, 3360–3368 (1996).

    Article ADS Google Scholar

  31. Adachihara, H., Hess, O., Abraham, E., Ru, P. & Moloney, J. V. Spatiotemporal chaos in broad-area semiconductor lasers. J. Opt. Soc. Am. B 10, 658–665 (1993).

    Article ADS Google Scholar

  32. Marciante, J. & Agrawal, G. Spatio-temporal characteristics of filamentation in broad-area semiconductor lasers. IEEE J. Quant. Electron. 33, 1174–1179 (1997).

    Article ADS Google Scholar

  33. Arahata, M. & Uchida, A. Inphase and antiphase dynamics of spatially-resolved light intensities emitted by a chaotic broad-area semiconductor laser. IEEE J. Sel. Top. Quant. Electron. 21, 1800609 (2015).

    Article Google Scholar

  34. Tachikawa, T., Takimoto, S., Shogenji, R. & Ohtsubo, J. Dynamics of broad-area semiconductor lasers with short optical feedback. IEEE J. Quant. Electron. 46, 140 (2010).

    Article ADS Google Scholar

  35. Kaiser, J., Fischer, I., Elsasser, W., Gehrig, E. & Hess, O. Mode-locking in broad-area semiconductor lasers enhanced by picosecond-pulse injection. IEEE J. Sel. Top. Quant. Electron. 10, 968 (2004).

    Article ADS Google Scholar

  36. Kaiser, J., Fischer, I. & Elsässer, W. Mode locking of lateral modes in broad-area semiconductor lasers by subharmonic optical pulse injection. Appl. Phys. Lett. 88, 101110 (2006).

    Article ADS Google Scholar

  37. Stelmakh, N. & Vasilyev, M. Spatially-resolved self-heterodyne spectroscopy of lateral modes of broad-area laser diodes. Opt. Express 22, 3845–3859 (2014).

    Article ADS Google Scholar

  38. Stelmakh, N. & Flowers, M. Measurement of spatial modes of broad-area diode lasers with 1-GHz resolution grating spectrometer. IEEE Photonics Tech. Lett. 18, 1618–1620 (2006).

    Article ADS Google Scholar

  39. Crump, P. et al. Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers. Semicond. Sci. Tech. 27, 045001 (2012).

    Article ADS Google Scholar

  40. Crump, P., Ekterai, M., Schultz, C., Erbert, G. & Tränkle, G. Studies of limitations to lateral brightness in high power diode lasers using spectrally-resolved mode profiles. In 2014 International Semiconductor Laser Conference 23–24 (IEEE, 2014).

  41. Uhlig, L., Kunzmann, D. J. & Schwarz, U. T. Characterization of lateral and longitudinal mode competition in blue ingan broad-ridge laser diodes. Phys. Stat. Sol. A 220, 0751 (2023).

    Google Scholar

  42. Elsasser, W. & Gobel, E. Multimode effects in the spectral linewidth of semiconductor lasers. IEEE J. Quant. Electron. 21, 687 (1985).

    Article ADS Google Scholar

  43. Brunner, D., Soriano, M. C., Porte, X. & Fischer, I. Experimental phase-space tomography of semiconductor laser dynamics. Phys. Rev. Lett. 115, 053901 (2015).

    Article ADS Google Scholar

  44. Wishon, M. J., Locquet, A., Chang, C. Y., Choi, D. & Citrin, D. S. Crisis route to chaos in semiconductor lasers subjected to external optical feedback. Phys. Rev. A 97, 033849 (2018).

    Article ADS Google Scholar

  45. Cappelli, F. et al. Retrieval of phase relation and emission profile of quantum cascade laser frequency combs. Nat. Photonics 13, 562–568 (2019).

    Article Google Scholar

  46. Mandre, S. K., Fischer, I. & Elsäßer, W. Spatiotemporal emission dynamics of a broad-area semiconductor laser in an external cavity: stabilization and feedback-induced instabilities. Opt. Comm. 244, 355 (2005).

    Article ADS Google Scholar

  47. Smith, P. W. Simultaneous phase-locking of longitudinal and transverse laser modes. Appl. Phys. Lett. 13, 235–237 (1968).

    Article ADS Google Scholar

  48. Côté, D. & van Driel, H. M. Period doubling of a femtosecond ti:sapphire laser by total mode locking. Opt. Lett. 23, 715–717 (1998).

    Article ADS Google Scholar

  49. Ziegler, M. O. et al. Spatiotemporal emission dynamics of ridge waveguide laser diodes: picosecond pulsing and switching. J. Opt. Soc. Am. B 16, 2015–2022 (1999).

    Article ADS Google Scholar

  50. Tan, G.-L., Mand, R. & Xu, J. Self-consistent modeling of beam instabilities in 980-nm fiber pump-lasers. IEEE J. Quant. Electron. 33, 1384–1395 (1997).

    Article ADS Google Scholar

  51. Fu, X., Tan, G., Gordon, R. & Xu, J. Third-order nonlinearity induced lateral-mode frequency locking and beam instability in the high-power operation of narrow-ridge semiconductor lasers. IEEE J. Quant. Electron. 34, 1447–1454 (1998).

    Article ADS Google Scholar

  52. Choi, M., Fukushima, T. & Harayama, T. Alternate oscillations in quasistadium laser diodes. Phys. Rev. A 77, 063814 (2008).

    Article ADS Google Scholar

  53. Weng, H.-Z. et al. Spectral linewidth analysis for square microlasers. IEEE Photonics Tech. Lett. 29, 1931–1934 (2017).

    Article ADS Google Scholar

  54. Harayama, T., Fukushima, T., Sunada, S. & Ikeda, K. S. Asymmetric stationary lasing patterns in 2D symmetric microcavities. Phys. Rev. Lett. 91, 073903 (2003).

    Article ADS Google Scholar

  55. Fukushima, T., Tanaka, T. & Harayama, T. Unidirectional beam emission from strained ingaasp multiple-quantum-well quasistadium laser diodes. Appl. Phys. Lett. 86, 171103 (2005).

    Article ADS Google Scholar

  56. Rosales, R. et al. Optical pulse generation in single section InAs/GaAs quantum dot edge emitting lasers under continuous wave operation. Appl. Phys. Lett. 101, 221113 (2012).

    Article ADS Google Scholar

  57. Rosales, R. et al. High performance mode locking characteristics of single section quantum dash lasers. Opt. Express 20, 8649–8657 (2012).

    Article ADS Google Scholar

  58. Hugi, A., Villares, G., Blaser, S., Liu, H. C. & Faist, J. Mid-infrared frequency comb based on a quantum cascade laser. Nature 492, 229–233 (2012).

    Article Google Scholar

  59. Burghoff, D. et al. Terahertz laser frequency combs. Nat. Photonics 8, 462–467 (2014).

    Article ADS Google Scholar

  60. Yu, N. et al. Coherent coupling of multiple transverse modes in quantum cascade lasers. Phys. Rev. Lett. 102, 013901 (2009).

    Article ADS Google Scholar

  61. Wójcik, A. K., Yu, N., Diehl, L., Capasso, F. & Belyanin, A. Self-synchronization of laser modes and multistability in quantum cascade lasers. Phys. Rev. Lett. 106, 133902 (2011).

    Article ADS Google Scholar

  62. Gioannini, M., Bardella, P. & Montrosset, I. Time-domain traveling-wave analysis of the multimode dynamics of quantum dot fabry-perot lasers. IEEE J. Sel. Top. Quant. Electron. 21, 698–708 (2015).

    Article ADS Google Scholar

  63. Kuramoto, Y. Cooperative dynamics of oscillator community: a study based on lattice of rings. Prog. Theor. Phys. Suppl. 79, 223–240 (1984).

    Article ADS Google Scholar

Download references

Spontaneous phase locking in a broad-area semiconductor laser (2025)

References

Top Articles
Latest Posts
Recommended Articles
Article information

Author: Manual Maggio

Last Updated:

Views: 6453

Rating: 4.9 / 5 (69 voted)

Reviews: 84% of readers found this page helpful

Author information

Name: Manual Maggio

Birthday: 1998-01-20

Address: 359 Kelvin Stream, Lake Eldonview, MT 33517-1242

Phone: +577037762465

Job: Product Hospitality Supervisor

Hobby: Gardening, Web surfing, Video gaming, Amateur radio, Flag Football, Reading, Table tennis

Introduction: My name is Manual Maggio, I am a thankful, tender, adventurous, delightful, fantastic, proud, graceful person who loves writing and wants to share my knowledge and understanding with you.